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Abstract

This work introduces a new inversion formula for analytical functions.

It is simple, generally applicable and straightforward to use both in hand

calculations and for symbolic machine processing. It is easier to apply

than the traditional Lagrange-Bürmann formula since no taking limits is

required. This formula is important for inverting functions in physical

and mathematical problems.1
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1 Introduction

1.1 General

The inversion of an analytic function f(z) with z, u ∈ C

f(z) = u (1)

is defined as
z = g(u) (2)

There is no general simple method known to determine g(u) unless the variable
z can be readily solved from f(z). Lagrange [1] was the first to find a useful
series expansion. Bürmann [2] and [8] generalized it to the Lagrange-Bürmann
formula.
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Good [3] extended the Lagrange-Bürmann formula to multiple variables.
His formula is known as the Lagrange-Good formula and Hofbauer [4] supplied
the proof. A number of investigations has been published over the Lagrange-
Bürmann formula for various applications, like Zhao [5] and Merlini et al. [6].
Sokal [7] recently introduced a new generalization of the Lagrange-Bürmann
formula. We first express the Lagrange-Bürmann inversion formula which is the
present standard method for calculating the inverse. The new inversion formula
is derived next.

1.2 The Lagrange-Bürmann Inversion Formula

Lagrange [1] and Bürmann [2] introduced an inversion formula for a function
f(z) of a complex variable z.

f(z) = u (3)

with f being analytic at some point z0 and the first derivative at z0, is required
to be nonzero.

[
df(z)

dz
]z0 6= 0 (4)

f(z) has a value u0 at z0. The inverse function is g(u)

z = g(u) = g(f(z)) (5)

The Lagrange inversion formula or the Lagrange-Bürmann formula is a Taylor
series as follows.

z = z0 +

∞∑

n=1

(u − u0)
n

n!
[ lim
z→z0

[
dn−1

dzn−1
(

z − z0

f(z)− u0

)n]] (6)

Proof of this formula can be found in [1] and [2]. Taking limits in terms in equa-
tion (6) usually requires lengthy calculations and a repeated use of L’Hospital’s
rule to get rid of the singularity. All terms belonging to a certain coefficient
need to be kept together to determine the limit properly. This may be a very
laborious task in hand calculations.

2 The Inversion Formula

Using the annotation of the preceding chapter, let

u = f(z) z, u ∈ C (7)

and f(z) be analytic over the interior of a circle

r = |z − z0| (8)

Let the inverse function g(u) be analytic over the interior of a circle R0 at u0

R0 = |u− u0| (9)
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We have a Taylor series

z = z0 +

∞∑

n=1

(u − u0)
n

n!
[
dn

dun
g(u)]u0

(10)

This series converges over the circle R1 (as in equation (9)). The equation (10)
is very difficult to be used any further as such. Higher derivatives of g(u) are
requested and to get them, one would need the g(u). We can use derivatives
of f(z) instead of g(u). In order to circumvent the generation of progressively
complicated terms, we proceed as follows. Differentiate equation (11) below.

z = g(u) (11)

to obtain
d

dz
z = 1 = (

d

du
g)(

d

dz
u) = (

d

du
g(u))(

d

dz
f(z)) (12)

and solve it as
d

du
g(u) =

1

( d

dz
f(z))

(13)

Differentiate (13) further and solve it for

d2

du2
g(u) =

1

( d

dz
f(z))

· [
d

dz

1

( d

dz
f(z))

] (14)

In the same manner the n’th derivative would be solved as

dn

dun
g(u) =

1

( d

dz
f(z))

·[
d

dz

1

( d

dz
f(z))

·[
d

dz

1

( d

dz
f(z))

···[
d

dz

1

( d

dz
f(z))

·[
d

dz

1

( d

dz
f(z))

]]]]

(15)
having n − 1 derivatives acting on the right side in addition to the bracketed
derivatives acting on f(z) alone. We can rearrange the brackets yielding

dn

dun
g(u) = [

1
d

dz
f(z)

·
d

dz
]n−1

1

( d

dz
f(z))

(16)

The multiplying factor is a differential operator acting on all terms to the right
containing any dependence on z. Placing this result to equation (10) yields the
simplified inversion formula

z = z0 +

∞∑

n=1

(u− u0)
n

n!
[[

1
d

dz
f(z)

·
d

dz
]n−1

1

( d

dz
f(z))

]u0
(17)

The necessary, but not sufficient, condition for the new inversion formula to
converge is that the first derivative of f(z) must be nonzero at z0. The radius
of convergence R1 must be evaluated for each resulting series. If a singularity
would appear at z0, a translation to a nearby point should be made.
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3 Conclusions

The equation (17) represents a simple alternative to the Lagrange-Bürmann
formula (equation (6)). The Lagrange-Bürmann formula requires taking limits
and repeated use of L’Hospital’s rule to remove the singularity. The new formula
requires only elementary differentiation and evaluation at z0.

Comparison of coefficients in each term between the two formulas is not
possible since the expansions are based on polynomials of u. A special case
appears when u0 = 0 making the expansions powers of u. This leads to equalities
but not directly. One has to approach the limit (z → 0) in equation (6) finally
reaching terms identical with equation (17). Working in the opposite way is not
possible.

In spite of its simplicity, this inversion formula can be applied generally.
It can be used for inversion of functions and polynomials and for reversion of
series. It is valid also for real variables. It is useful for estimating the behavior
of the inverse function at some point with a few beginning terms. The radius
of convergence needs to be studied for each new series.
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