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Abstract

This work introduces a new functional series for expanding an analytic
function in terms of an arbitrary analytic function. It is generally appli-
cable and straightforward to use. It is also suitable for approximating the
behavior of a function with a few terms. A new expression is presented for
the composite function’s n’th derivative. The inverse-composite method
is handled in this work also. 1
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0.3

Dedicated to my father who believed in me.

1 Introduction

1.1 General

Often the need arises to form a power series of a known function in terms of
some other known function, called a functional series. Merely a few methods
exist for this purpose, for example the Puiseux series. It expands in terms of
fractional powers of the argument. Schlömilch series is done in terms of zero’th
order Bessel function of the first kind. They offer no generality to this problem.

∗The author is grateful to Visilab Signal Technologies for supporting this work.
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The well-known Taylor’s power series [1] is expanded in terms of a polynomial
power series.

The literary background for this subject is thin. Textbooks ([3], [4], [5], [6],
[7], [8], [9], [10]) offer nil in this respect but the classic Whittaker & Watson
[2] displays Teixeira’s theorem and Laurent’s series. This subject seems not to
be actively studied presently. Aschenbrenner [11] has made an effort to find a
power series. Other research on generating power series for analytic functions
are published but are only superficially relevant regarding this work ([12], [13],
[14]). The recent research in fractional calculus Li [15] and Yang [16] is after
series expansions. Boas [20] worked with function expansions and developed
some useful theorems. Campos [17] has also made a good effort in this direction
by using diffintegration concepts. The results are generalizations of the known
series expansions. Widder [18], [19] made a step towards a functional series in
terms of a sequence of prescribed functions, by using Wronskian and differential
operators.

1.2 Teixeira’s Theorem

The Teixeira’s theorem [21] offers a way to expand a given function in terms of
some function. It can be applied to some functions with a set of requirements.
Teixeira’s theorem is an extension of Bürmann’s theorem.

Using the notation of [2], the function f(z) is analytic in region A which is
ring-shaped. The outer curve is c1 and the inner curve is c2. θ(z) is an analytic
function on and inside c1 having only one simple zero at a within that region
and x ∈ A. For all points z ∈ c1

|θ(x)| < |θ(z)| (1)

For all points z ∈ c2
|θ(x)| > |θ(z)| (2)

Then we may expand the function as follows

f(x) =

∞∑
n=0

An[θ(x)]n +

∞∑
n=1

Bn
[θ(x)]n

(3)

where

An =
1

2πi · n

∫
c1

f ′(z)dz

[θ(z)]n
(4)

Bn =
−1

2πi · n

∫
c2

f ′(z)[θ(z)]ndz (5)

This is an expansion of f(z) in terms of positive and negative powers of θ(z).
Due to the restrictions above, this theorem is limited in scope.
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1.3 Function Substitution

While lacking a general method, substitutions have sometimes been used. The
independent variable is replaced with a function in some known series formula,
like an ordinary Taylor’s power series. One is then anticipating that somehow
it would sort out to some sensible expansion for his use. For example, the
transcendental functions like exp(z), sin(z) are used and the binomial expansion
too.

Taylor’s power series for a function f(z) in terms of a variable z ∈ C, may
be used as a basis for substitution.

f(z) =

∞∑
n=0

(z − z0)n

n!
[
dnf(z)

dzn
]z0 (6)

with f(z) being analytic around some point z0 over the interior of a circle

r = |z − z0| (7)

The variable z is here complex in the most general analytic case. Since the
bracketed term in equation (6) is a constant bn, we can directly substitute s(z)
for z to get

f(s(z)) =

∞∑
n=0

(s(z)− s(z0))n

n!
bn (8)

This unfortunate method is the only practical one available in addition to the
inverse-composite method. The equation (8) is not what we set out to achieve
in the first place. It becomes very difficult to use if we need to expand the
function f(z) without the composite function s(z) in the argument.

1.4 Problem Setup

The principal motivation for this work is to find for a function f(z) a power
series in terms of a function s(z), both being arbitrary. The required equation
is of the following form

f(z) =
∞∑
n=0

(s(z)− s(z0))ncn (9)

Here cn are coefficients with no dependence on z.
There is a need for a simple functional power series with as few restrictions

as possible on the functions. We have at least two options available to solve
equation (9). We either derive an inverse-composite function pair to generate a
new function h(s) for which to apply (8) (see Appendix A) or we derive some
new functional series. In the following section we derive the new functional
power series. In the next section, some sample cases are solved exhibiting a few
features of it. Appendix B introduces the remainder term for the new functional
power series. The composite function’s derivatives are processed in Appendix
C.
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2 The Functional Power Series

The Taylor’s power series for an analytic function k(s) with the variable s =
s(z) ∈ C, after we mark s0 = s(z0), will be

k(s) =

∞∑
n=0

(s− s0)n

n!
[
dnk(s)

dsn
]s0 (10)

We attempt to derive a series of the form of equation (9) from this. The equation
(49) for a composite function in Appendix C is suitable for advancing equation
(10). This brings us to the simplified equation

k(s(z)) =

∞∑
n=0

(s(z)− s(z0))n

n!
[(

1

s′(z)

d

dz
)nk(s(z))]z0 (11)

Equation (11) is not yet in the form we wanted. Since k(s(z)) is arbitrary we
can replace it with a function f(z) obtaining

f(z) =

∞∑
n=0

(s(z)− s(z0))n

n!
[(

1

s′(z)

d

dz
)nf(z)]z0 (12)

The necessary but not sufficient conditions for this power series to converge, are

s′(z0) 6= 0 (13)

and
|s(z0)| <∞ (14)

Equation (12) is the functional power series for an arbitrary function f(z) in
terms of another arbitrary function s(z). Additional parameters can be planted
to s(z). Also the point of focus z0 is a free parameter as long as the basic
conditions (13) and (14) hold and the resulting series converges. When s(z)→ z
this series will approach a Taylor’s series.

3 Simple Results

In the following we present example cases solved with the new functional power
series (12), assuming z ∈ C. It seems to be typical, that the functional power
series of a simple function in terms of another simple function turns out to
be very simple in form. It is usually either an exponential, a logarithmic or a
binomial series.

3.1 Rational Power Function in Terms of a Power Func-
tion and Vice Versa

We look for the series of the function

f(z) =
1

1− 21−z
(15)
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in terms of
s(z) = 2−z (16)

By using the equation (12) we get

f(z) =
1

1− 21−z0

∞∑
n=0

2n · (2−z − 2−z0)n

(1− 21−z0)n
(17)

This equation is identified as formally being a binomial series and after sorting
it out we end up with an identity. If we attempt to find the series of

f(z) = r−z (18)

in terms of

s(z) =
1

1− r1−z
(19)

we obtain

f(z) =
1

rz0
− (1− r1−z0)

r
[

∞∑
n=0

(1− 1− r1−z0
1− r1−z

)n − 1] (20)

This equation is again a binomial series and leads to an identity.

3.2 Power Function in Terms of a Power Function

The function
f(z) = k−z (21)

can be expanded in terms of
s(z) = M−z (22)

resulting in

f(z) =
1

kz0

∞∑
n=0

(M
z0

Mz − 1)n · ln(k) · ln( kM ) · ln( k
M2 ) · ln( k

M3 )...ln( k
Mn−1 )

n!(ln(M))n
(23)

This is not any common series and likely cannot be derived from a Taylor’s
series in a trivial way. It is notable that this series will terminate when

n =
ln(k)

ln(M)
(24)

since n ∈ N meaning that the radices logarithms have an integer in common.
Termination is a characteristic option for the functional power series in some
cases. The particular case here is a function expanded in terms of its own
power β. This can be proved from the equation (12) to be a general property.
Termination happens if the value of the power β is for some integer n = 1, 2, 3...

β =
1

n
(25)

The expansion of a function in terms of its own power is the following

f(z) = f(z0)[1 +

∞∑
n=1

(( f(z)f(z0)
)β − 1)n

n!βn
· (1− β)(1− 2β)...(1− (n− 1)β)] (26)
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3.3 Rational Function in Terms of a Rational Function

We need the series of the rational function

f(z) =
1

(z − a)(z − a)
(27)

in terms of

s(z) =
1

z − a
(28)

By applying the equation (12) again we obtain

f(z) =
−1

a2
− 2

a(z − a)
+ (

1

z − a
+

1

a
)2 (29)

This is a partial fraction ”‘solution”’ to the famous degenerate case. This is an
example of a series of a function in terms of its power leading to a terminating
series, becoming an identity.

3.4 Rational Function in Terms of a Sinus Function, an
Approximation

We want to approximate the function f(z) around origin

f(z) =
1

1 + z
(30)

with a few terms of
s(z) = sin(z) (31)

The equation (12) gives the first four terms

f(z) ≈ 1− sin(z) + sin2(z)− 7

6
sin3(z) (32)

In Fig. 1 we have a real variable case. We can observe that even by using
just a few terms will give a good approximation, although the sinus function
was not particularly selected to match the rational function at the origin.

4 Discussion

The equation (12) represents a new functional power series for an arbitrary
function in terms of another arbitrary function. Formally, there are no limits in
this respect, except the conditions (13) and (14) must be valid at the point of
focus. The functional series can be applied to expanding any function in terms
of any function as long as the derivatives

dns(z)

dzn
(33)
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Figure 1: Approximation of the elementary rational function in terms of the
sinus function. A few first approximations are shown and with real argument
values only
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and
dnf(z)

dzn
(34)

exist for all n. Analyticity, of course, will guarantee this.
Partial (truncated) series can be used in complicated cases where the pattern

of the coefficients cn is unclear. The resulting error can be estimated with a
remainder term. The functional series requires only elementary differentiation
and evaluation at z0. Thus it is suitable for hand calculations and symbolic
machine processing. The s(z) function may contain free parameters.

Termination of the series is characteristic in some cases. Terminating series
create identities which may be very complicated.

The functional series is useful for approximating the behavior of a function
around a point of interest in terms of some other function. The function to be
used can be selected to possibly speed up convergence and minimize the number
of terms for the required accuracy. Asymptotic behavior of a function may be
studied with the new series.

As a byproduct of this work, the equations (49) and (50) in Appendix C are
new expressions for the n’th derivative of a composite function.
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A Appendix. The Inverse-Composite Function
and The Taylor’s Series of Functions

As noted above, the Taylor’s series (refer to equation (8)) can be used as basis
for a functional series. Intuitively, we can create an inverse-composite function
pair as follows. The composite function is

s = s(z) (35)

and the inverse would be, if solvable

z = g(s) = s−1(s(z)) (36)

Thus
f(z) = f(g(s(z))) = h(s(z)) (37)

We can use h(s(z)) instead of f(z) and use the Taylor’s series of h(s), assuming
it exists, to yield

f(z) = h(s(z)) =

∞∑
n=0

(s(z)− s(z0))n

n!
[
dnh(s)

dsn
]s0 (38)

To have any practical use of this equation one needs to be able to solve in
algebraic form the inverse function g(s). This is possible only with a small set
of functions.

B Appendix. Remainder Term for the Func-
tional Power Series

The remainder term of a series expansion equals the error caused by breaking
the series after the N’th term. Assuming f(z) and s(z) are analytic (referring
to equation (12)) and by using equation (49) in Appendix C, it is not difficult
to prove by induction the expression

f(z) =

N∑
n=0

(s(z)− s(z0))n

n!
[(

1

s′(z)

d

dz
)nf(z)]z0+

1

N !

∫ s(z)

s(z0)

dχ · (s− χ)N

[
(

1
dχ
dz

d

dz
)N+1f(z)

]
z=z−1(χ)

(39)

z = z−1(χ) is the inverse function of s(z). For the real variable case, by using
the mean value theorem and integrating, we get the latter part which is the
remainder

RN (s) =
(s(z)− s(z0))N+1

(N + 1)!

[
(

1
ds(z)
dz

d

dz
)N+1f(z)

]
z=z−1(ζ)

(40)
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ζ is some value of s between s(z0) and s(z). This result is analogous to the
Lagrange remainder for real functions. For the complex variable case, by using
the corresponding mean value theorem IV by Curtiss [22] we get after integration

RN (s) =
[(θ − 1)(s(z)− s(z0))]N+1

(N + 1)!

[
(

1
ds(z)
dz

d

dz
)N+1f(z)

]
z=z−1(s(z0))

(41)

being actually equal to

RN (s) =
[(θ − 1)(s(z)− s(z0))]N+1

(N + 1)!

[
(

1
ds(z)
dz

d

dz
)N+1f(z)

]
z0

(42)

Here θ has some value according to

|θ − 1| < 1 (43)

C Appendix. Derivatives of a Composite Func-
tion

The derivatives of a composite function has been studied earlier and usually
combinatoric methods are used (refer to [23], [24], [25]). The resulting expres-
sions are complicated and not suitable for our equation (10).

We need to solve the n’th derivative of a composite function

dnk(s)

dsn
(44)

with the function s(z) as the composite. An expression with derivatives by z is
required. We take the variable z ∈ C as an independent variable and unravel
all the derivative terms. The first derivative would be

dk

ds
=

1

s′(z)

dk

dz
(45)

The second derivative is

d2k

ds2
=

d

dz
(

1

s′(z)

dk

dz
) · dz
ds

(46)

If differentiation is performed fully, we end up with a slightly complicated ex-
pression. It is obvious that continuing in this way will lead to an enormous
complexity. This is very difficult to be used any further as such. In order to
circumvent the generation of progressively complicated terms in higher deriva-
tives, we proceed as follows. Equation (46) becomes, without fully completing
the differentiation,

d2k

ds2
=

1

s′(z)
· d
dz

(
1

s′(z)

dk

dz
) (47)
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Continuing along this route leads to the n’th derivative

dnk

dsn
=

1

s′(z)
(
d

dz
(

1

s′(z)
(
d

dz
(

1

s′(z)
(
d

dz
· · · ·(dk

dz
)))))) (48)

We can rearrange the brackets to obtain

dnk(s)

dsn
= (

1

s′(z)

d

dz
)nk(s(z)) (49)

This is the required end result.
We can also perform analogous steps from equation (45) in the opposite

direction to get
dnk(s(z))

dzn
= (s′(z)

d

ds
)nk(s) (50)
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