
On the Cauchy-Euler Operator

Henrik Stenlund∗

Visilab Signal Technologies Oy, Finland

November 19, 2015

Abstract

We present some results obtained for the Cauchy-Euler differential
operator, especially for the exponential function of it. 1
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1 Introduction

Our short study focuses on a differential operator x∂x which is known as the
Cauchy-Euler operator [1]. The operator is more generally defined as having a
polynomial prefactor but here we concentrate on having the first order only.

Assuming x ∈ R we present some useful features of the Cauchy-Euler differ-
ential operator. It is applied to functions whose derivatives exist and we also
assume that the functions can be expanded as a Taylor’s power series. The
operator appears to have interesting properties displayed here, some of which
are believed to be new. Here ∂x represents the partial derivative operator. The
results are valid for analytic functions over the complex plane as well.

2 The Cauchy-Euler Operator

We begin by presenting targets of progressively increasing complexity for the
operator. These are proven by differentiation.

(x∂x)x = x (1)
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(x∂x)
m · x = x (2)

(x∂x)x
n = n · xn (3)

Therefore we obtain
(x∂x)

mxn = nm · xn (4)

For the general case, m ∈ N , nm is the eigenvalue and xn is the eigenfunction,
n ∈ R,n 6= 0.

The partial derivative and Cauchy-Euler operator have helpful commutators
which prove useful in handling the Cauchy-Euler operator in more complex
cases.

[x, ∂x] = −1 (5)

[x∂x, ∂xx] = 0 (6)

We apply the m’th power operator to a more challenging function and get after
expanding the exponential function to a Taylor’s power series

(x∂x)
me−x =

∞∑
n=0

(−x)nnm

n!
(7)

The exponential differential operator is defined by its power series. That leads
to

eβx∂xxj =

∞∑
n=0

βn(x∂x)
n

n!
xj =

∞∑
n=0

βnjnxj

n!
(8)

= eβjxj = (eβx)j (9)

Here we have taken into use a parameter β∈C, β 6= 0. Without losing generality,
we assume the function A(x) has a Taylor’s series around the origin. Thus, by
using the results above, we can write down a rather impressive general expression

eβx∂xA(x) = eβx∂x

∞∑
n=0

anx
n

n!
=

∞∑
n=0

ane
βx∂xxn

n!
(10)

=

∞∑
n=0

an(e
βx)n

n!
= A(xeβ) (11)

We have as simple examples of application

cos(βx∂x)A(x) =
1

2
[A(xeiβ) +A(xe−iβ)] (12)

sin(βx∂x)A(x) =
1

2i
[A(xeiβ)−A(xe−iβ)] (13)

cosh(βx∂x)A(x) =
1

2
[A(xeβ) +A(xe−β)] (14)

sinh(βx∂x)A(x) =
1

2
[A(xeβ)−A(xe−β)] (15)

eβx∂xe−ηx = e−ηxeβ (16)
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3 Discussion

The Cauchy-Euler operator has an interesting general property (11). It may
prove useful while transforming differential equations and in solving various
Cauchy problems with differential operators of this type.
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