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Abstract

This study offers three solutions of the diffusion coefficient’s depen-
dence on concentration in general cases without any limitations by bound-
ary conditions. They are all suitable for numerical analysis when the
experimental concentration data and time series are available producing
dependence functions. As they are also of general nature, the expressions
can be used for further investigations and modeling and fitting. Two of
the methods offer three-dimensional approaches to this problem and may
prove useful when combined with present-day laser scanning volumetric
sensors, atomic probe microscopes and high performance computers. This
is particularly true in geometries more complex than the regular one con-
sisting of two semi-infinite slabs. 12
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1 Introduction

The concentration dependence is of importance in studying impurity diffusion
in metals and semiconductors at high temperatures but will find applications in
other fields of diffusion as well. E.g. finding sudden changes in concentration
dependence may reveal changes in crystal structure in alloys. This paper han-
dles in a short and communicative way three methods for solving the behavior
of concentration dependence of the diffusion coefficient from experimental data.
The first one is a general integral formula in three dimensions giving a good plat-
form for further investigations. The second one is also an integral expression
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of a more complicated and general nature but being better suited for numerical
analysis. The third method is for one-dimensional problems being also an inte-
gral expression suitable for numerical analysis. All results are carried out using
rather elementary analysis.

1.1 Statement of Problem and History

The problem of diffusion coefficients depending on concentration has been known
as a fact for a long time through experimental data. The purpose is to solve the
dependence from the experimental concentration values measured at varying
locations and times. The typical geometry is a simple two-material boundary
with simple natural boundary conditions. The acquired data are usually in a
form not too suitable for numerical work as the differences in concentration as
a function of time are small. Theoretically, the diffusion equation is known
to be hard to solve in closed form, in spite of its simplicity, if there is any
nonlinearity, no matter how trivial it be. That builds a strong wall against
modeling and experimenting in analysis and numerical terms. Only with some
special boundary conditions have some simple cases been given any reasonable
form as the solution. Brute force numerical solutions are, of course, possible,
but require careful analysis of boundary conditions and are cumbersome to
perform if parametric behavior is to be studied. An introductory discussion is
in Shewmon [3]. The available work made by pioneers, like Boltzmann [1] and
Matano [2], lend little hand to further studies.

1.2 Method of Boltzmann

Ludwig Boltzmann [1] studied the one-dimensional diffusion equation below
with the aid of a simple change of variable Equation (2). The original problem
was that of diffusion of two fluids measured with the aid of light to see the
change in index of refraction in both media. The resulting equations are one-
dimensional.

∂n

∂t
=

∂

∂x
(k · ∂n

∂x
) (1)

k is the diffusion coefficient being a function of index n of the resulting mixture
of fluids at various distances x.

λ =
x√
t

(2)

After integration, one obtains for constant t

k(n) =
1

2 · t · dndx
·
∫ ∞
x

dn

dx
· x · dx (3)

This result is dependent on the simple boundary conditions.
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1.3 Method of Matano

The method of Chujiro Matano [2] is based on similar mathematics as Boltz-
mann. His special boundary conditions for the concentration equation (4) were:

∂c

∂t
=

∂

∂x
(D(c) · ∂c

∂x
) (4)

D(c) is the diffusion coefficient being a function of c. At t = 0

c = 1, when x > 0 (5)

and
c = 0, when x < 0 (6)

and always at x = ±∞
∂c

∂x
= 0 (7)

With the identical substitution Equation (2) as above we get for the diffusion
equation

−λ
2
· dc
dλ

=
∂

∂λ
· (D · dc

dλ
) (8)

With the boundary conditions this can be solved.

D(c) = −1

2
· dλ
dc
·
∫ c

0

λ · dc (9)

having also the condition ∫ 1

0

λ · dc = 0 (10)

When t = constant we get

D(c) =
1

2 · t
· dx
dc
·
∫ 1

c

x · dc (11)

with ∫ 1

0

x · dc = 0 (12)

The Equation (11) can be used in numerical methods with carefully observed
boundary conditions. The formula is simple and much relies on accuracy of
experimental concentration values.

2 Theory

2.1 The First Method

The concentration dependence of the diffusion coefficient can be stated as fol-
lows.

D = D(c) (13)
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where c is the concentration and D is the diffusion coefficient having in general
some dependence on concentration. The diffusion equation in three dimensions
is as follows.

∂c

∂t
= ∇ · (D(c)∇c) (14)

where t is the time. The basic assumption is to have the knowledge of c(r̄, t)
from experimental data as well as

∂c(r̄, t)

∂t
(15)

The data is in three dimensions in general and in one dimension in restricted
cases. The data series should contain at least some reasonable time range to
obtain any practical numerical results for D. The concentration behaves always
in a continuous way with some quite natural boundary conditions. Only at
t = 0 the concentration may have either a piecewise continuous behavior or it
may even be discontinuous. However, at times t > 0, it behaves continuously
and so does its derivatives. We have made some operations in the following
which might at first sight seem careless. However, as the derivatives and the
functions of them, behave in a continuous manner, there is no reason for alarm.
Our task is now to solve D(c) from Equation (14) in a closed form. We start by
introducing the simple transformation:

∇ · (D(c)∇c) = ∇2F (c) (16)

Here F (c) is a scalar function of concentration which is equal to

F (c) =

∫ c

c0

D(c) · dc (17)

and thus Eq.(14) becomes
∂c

∂t
= ∇2 · F (c) (18)

We know the property of the three-dimensional delta function

∇2(
1

r̄ − r̄1
) = −4 · π · δ(r̄ − r̄1) (19)

and transform the left-hand side of Equation (17) to an integral

F (c) = − 1

4 · π

∫ ∂c(r̄2,t)
∂t

(r̄ − r̄2)
dr̄2 (20)

This can be differentiated with respect to c and to obtain D(c)

D(c) = − 1

4 · π
∂

∂c

∫ ∂c(r̄2,t)
∂t

(r̄ − r̄2)
dr̄2 (21)

The integral is a function of r̄ at a fixed time t and thus a function of c since
we know c(r̄, t). The apparent singularity can usually be overcome by a Cauchy
principal value when dealing with potentially singular expressions.
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2.2 The Second Method

We use the diffusion equation and other basic relations as before. We can now
use the known relation

∇D(c) = D′(c) · ∇c (22)

Substituting this into Equation (14) one gets

∂c

∂t
= D′(c) · ∇c2 +D(c) · ∇2c (23)

and a differential equation for D(c)

D′(c) +D(c) · g(c) = h(c) (24)

Here

g(c) =
∇2c(r̄, t)

(∇c(r̄, t))2
(25)

and

h(c) =
∂c(r̄,t)

∂t

(∇c(r̄, t))2
(26)

g and h are functions of c only since we know c = c(r̄, t). We can, in principle,
solve for r̄. Equation (24) is of linear type and it has an immediate solution

D(c) = exp (−
∫ c

c00

g(c1) · dc1) · (
∫ c

c0

exp (

∫ c2

c000

g(c3) · dc3) · h(c2) · dc2 +D0)

(27)
We have used an arbitrary initial condition

D(c0) = D0 (28)

This method is useful when projected to one-dimensional problems.

2.3 The Third Method

The last method is for one-dimensional problems alone. After flattening Equa-
tion (14) to one dimension, one can integrate it from x to ∞ and divide it
by

∂c

∂x
(29)

to get

D(c) =
A0 −

∫∞
x

∂c(x1,t)
∂t · dx1

∂c(x,t)
∂x

(30)

Time t is fixed and so we can solve for

x = c−1(c(x)) (31)
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this being more or less trivial in numerical terms with the experimental data.
The numerator and the denominator are functions of c only. A0 can be fixed by
the natural boundary condition

lim
x→∞

∂c(x, t)

∂x
= 0 ⇒ A0 (32)

and we have finally

D(c) =

∫∞
x
−∂c(x1,t)

∂t · dx1

∂c(x,t)
∂x

(33)

This result is always valid independent of boundary conditions. As a method
of solution for concentration dependence, it is more general than the methods
of Boltzmann and Matano.

2.4 Conclusions

These methods offer immediate general solutions (Equations (21), (27) and (33))
for the concentration dependence of the diffusion coefficient being free of any
limiting boundary conditions at this time. One has the option of choosing
numerically most attractive of these. It should be noted that to obtain results of
sufficient accuracy, the coordinate ranges of r̄ = r̄(x, y, z) and especially t should
be wide enough. Error estimation is outside the scope of this work. The latter
two methods are very sensitive to the spatial gradient and thus care in numerical
work is required. The results resemble the results of Boltzmann and Matano
but have more general boundary conditions and thus wider applications. The
methods of Boltzmann and Matano rely on the assumption of simplifying the
diffusion equation with the variable x√

(t)
. In general three-dimensional cases,

this is a too strong assumption and is not directly supported by experimental
data. The methods developed in this study, make no assumptions in this respect.
The two methods with three-dimensional basis offer a good platform for irregular
geometries or one may also use curvilinear coordinates in special cases.
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