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ABSTRACT

A quantum theory of atomic diffusion in solids is presented
and applied to a particular problem of interstitial diffusién, Li
in Ge and Si, The theory is based on transport in allowed narrow
bands using the relaxation time approximation. The bands were calcu-
lated by 'using a proper potential model through numerical methods,
The relaxa}ion time was taken from the theory of Kagan and Klinger
ﬁd] and the diffusion coefficients were calculated, For comparison
the result of the theory of Kagan and Klinger for the diffusion
coefficient was put also in numerical form, All coefficients show
relatively good agreement with experimental values (see table 3,),
The isotopic effect was also studied and DQ and E0 were found to

]
have dependences m * and A-m“1 + B respectively,
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2 INTRODUCTION

as. Introductory theory

An excess atom brought into solvent lattice finds itself
located in an equilibrium site between the lattice atoms and vib-
rates about the site as the others do, At high temperatures it
may randomly Jjump to the neighbouringhfree equilibrium site (see
figure 1.)’from which it can again move to another site., The inter-
stitial atom may jump in ome of 107 to 10° vibrations when it has
received energy enough from the lattice in form of thermal exci-
tations, phonoms, to exceed the potential barrier separating the

equilibrium sites.
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Figure 1, The lattice potential

The transitions hetween vibrational energy levels are
usually connected with successive single-phonon processes (thus
becoming a multi-phonon process) due to the large gaps between

levels prohibiting single phonon transitions. The equilibrium



distribution for interstitial atoms among their allowed energies
ie Boltzmann's classical distribution giving strong dominance to the
lowest level and only a small fraction occupies the overbarrier
levels, There is another phenomenon assisting the jump and it is
due to the fluctuations of the surrcunding atoms opening the bare
rier and making it easier for the atom to move. This is significant
only for large interstitial atoms, whose ion cores are of so large
radius that they are even from a geoﬁetrical standpoint prevented
from mOv%ng.

From these random jumps it follows that the excess atom
diffuses in the lattice by an interstitial mechanism. There are,
of course, several other mechanisms causing mass transport in lat-
tice and of these we can mention one of the most noteworthy, the
vacancy mechanism. By it we mean a solute atom-solvent lattice
vacancy pair moving together. The solute atom has substituted one
lattice atom and the vacancy moves around the solute. This motion
is, of course, due to the jumping of solvent atoms to the #acanéy
thus leaving vacancies behind them (see fig.2, below). Only as
the solute atom jumps to the vacancy is diffusion brought about
and thus the pair is‘strongly correlated in its motion, Vacancies
are very common at high temperatures being formed by thermal exci-
tations., The vacancy mechanism is dominating in self-diffusion and for

some elements in solute diffusion in semiconductors, In this work

Figure 2,
interstitial mechanism
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diffusion by interstitial mechanism only is studied but the theory

can ﬁsually be directly applied to other mechanisms,
Experimentally one has observed an interesting behaviour

for the diffusion coefficient as a function of temperature, mostly

at high temperatures

D= D, e (1)
where Uo is the potential barrier height and D0 is independent of
T, This is called Arrhenius‘ equation and D obheys it very well in
almoet all mass transport through solids, It is clear that the
nature of the dependence derives its origin from the factor of
Boltzmann for occupation as we shall later see,

In the following two sections we will shortly rewiev
some existing approaches in calculating D for particles in crystals

considering both classical and quantum theories,



b, Classical theories

The first theory explaining the Arrhenius-type behaviour
of D(p) was the Absolute Reaction Rate Theory due to Glasstone et
al, {1] using the concept of tramsition state in one dimension, They
considered the activated state, which is produced at the moment the
particle is in the region of the saddle point, to comnsist of similar
energy levels as the normal state arouﬁd the equilibrium point (see
fig. 3.). From this they concluded by statistical arguments that the
jump rate " had to be a product of the concentration (fraction cg)
of the particles in the activated state and the mean velocity of the
game particles in the direction of £
the irreversible jump divided by 3

the width of the activated state
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They obtained for the concentration

the ratio between the partition functions Figure 3., The activated
’ state
of the activated state and the normal state and as a result of re-

: —pk,
normalization of energy =zeros the factor e ° appeared

2 -
D=2 kT Ei.cng; (3)

h E !
where F; is the partition function belonging to the activated state
(energy normalized) and F is the one in the normal state and A is
the jump distance.

The principal assumption is that the particle is moving iso-

thermally and reversibly from one equilibrium site to another along
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the reaction coordinate, The moving particle is considered to be in
thermal equilibrium with the lattice at all times,

Wert and Zener Eﬂ and Zener [j] developed the rate theory
further to accomodate to the requirements of solid state diffusion
and they obtained for the jump frequency [

_ aG%T _ aSY, -aHY T (4)
P=nye = hVy € € .

Here n is the number of ways avallable for the particle to move from
site to site and ¥ is the vibrational frequency of the particle in
the initial state, ﬂG", AS" and A}frepresent the isothermal work associ-
ated with the motion of the particle to the activated state and chang-
s of entropy and enthalpy respectively. When this expression is sube-
stituted into the basic equation for D in the random walk theory, we
have (see Chandrasekhar [7])

* & -
D = A nv 645/2 e"AH/kT (5)
6 .

The basic assumptions of this theory have not been proved to be
valid and it is difficult to believe that the motion of the particle
would be reversible and the lifetime of the activated state could be
long enough to allow the use of equilibrium statistical mechanics,

The value of » is not clearly defined in this theory and is usually
put equal to the Debye or Einsteln frequency without giving any reason
for its applicability.

An attempt to improve the definition of U was made by Wert
[%], who used c¢lassical statistical methods to evaluate the jump
rate and calculated ¥V using the assumption of small harmonic vibra-

tions around the eguilibrium point,



Vineyard [5] derived a more general approach to calculate
[ avoiding thermodynamics. His theory gave the jump rate as a ratio
of probabilities of all points on the saddle surface (in configuration
space), which have positive velocities towards the diffusion direction
to the sum of all points in configuration space around the initial

'equilibrium site, Thus Vineyard obtains

Ot
= nizm J’é‘@éT‘d\/ ’

Vv
where ¢ is the potential energy. This is essentially a ratio of two

configurational partition functions. Employing the theory of small
vibrations Vineyard expanded the potential around the extremal points

and neglected terms of higher order than harmonic. His result .for [

was
IN 1
_AG/u-
TN
[~ nH: _,e‘ ’ (7)
Uy
i=!

where VM, are the 3N normal frequencies of atoms in their equilibrium
states and M: are the 3N-1 normal frequencies associated with the
activated complex. AG' is the free énergy difference between the initial
site and the saddle point.
It is readily realized that this theory contains many crucial

hypotheses, which limit the validity of the theory. Vineyard's [' -~
is based upon the assumption that an activated state exists and that
when an atom passes over the potential barrier the probability of
reversing the direction is vanishingly small.

| The advantages of Vineyard's theory over Absolute Reaction

Reaction Rate Theory are that the frequencies are defined in terms
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of the solvent lattice normal frequencies in the normal state and
in séddlepoint configuration but finally the calc;lation of Vis
still not well defined (in fact it is slmost incalculable in Vine-
yard‘s theory).

Rice (6] has avoided the use of cquilibrium statistical
mechanics in his dynamical theory by using a normal mode analysis
in the harmonic approximation. Rice calculated the frequency of
occurrence P({S}) of the appropriate éonfiguration in which the
diffusing atom has a large enough vibration amplitude to diffuse in
the right direction and the surrounding atoms are appropriately in

an out-of-phase motion giving

ren 5 PUSY, (8)

where

p(8)) - 7 VT e T 5 g

J k>l

Here v is some weighted mean frequency and UO is the critical
energy needed for the atoms to reach the proper amplitude and Uj is
the energy required to shift the barrier atoms in the lattice from
their equilibrium positions and éﬁ% is the pair correlation function
for atoms k and 1, (V] and S stand for the concentrations of vacancies
and solvent lattice atoms respectively.

Although this theory has been derived for diffusion by the
vacancy mechanism, it is directly applicable to other mechanisms,
e.gs to interstitial mechanism. The equation for ['is very general
and in order to obtain calculable expressions simplifying assumptions

are to be made, Clearly the critical amplitude must be at least one-
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half the jump distance (small frequency oscillation) and the oscil-
lators must be harmonic. The number of normal modes associated with
the process of achieving a critical amplitude is essentially smaller
than the total number of modes of the crystal. Finally the frequency
of thermal fluctuations around the diffusing atom is muech greater
than the jump rate.

Rice pbtained for the palr correlation function in terms of

the potential Wk between atoms k and 1

1
7
3’]‘.{ = e k/LT ’ Wkl = AH;‘_L""' T-A'Skf. (IO)
and r‘ becomes
5
‘ELA kt/, —(Uo+3:UJ'+ZAH“]AT (”)
P=nie e g

In this eguation we can identify the term

Al = U, + ZUj+ Elﬂ Hyg (12)
as the activation enthalpy of the rate theory.

The main weakness of Rice's theory is the assumption of
harmonicity and to obtain better correlation with experimental data,
anharmonic terms must be included., Rice‘s theory gives a many-body
approach to the problem and it is in this respect closer to real
processes than rate theories although it contains too many incalcul-
able frequencies,

Glyde [8] calculated the jump rate by using first a dynamical

method and then a purely statistical one making a kind of synthesis



of Vineyard*s and Rice's theories showing their equivalence. The
dynﬁmical part uses classical mechanics in normal coordinates and

Glyde calculates correlation functions with the aid of normal frequ-

encles. Through calculation of fluctuations Glyde arrived at the jump

frequency. By a statistical mechanical derivation he calculated the

same fluctuations and similar expressions for [° but by using differ=
ent random variable theorems than Rice to obtain the probability of a

fluctuation. Glyde“*s results are applicable when the force constants

are known, although the frequencies must be in some way approximated
to obtain numerical results from the expressions. Glyde‘s approach
is without any doubt one of the best classical treatments for the
diffusion coefficient,

Nardelli and Reatto [9] studied interstitial diffusion by
Kubo*s formalism starting from the Liouville equation for the total
system and derived the evolution equation for a particle in a peri--
odic potential, They coupled the equation to lattice vibrations in
thermal equilibrium and obtained the exprecssion for the diffusion
coefficient of ionized impurities in silicon and germanium in good

agreement with the experimental data

D=D, e'-Uo/kT (/5)

D, = ¢, 24T JUc/am (14)

- ~% ¢ o2 2
¢, = 2 }Lillsw/:, 7 el S c, . (’5)
2l e (1 +2[%)")

where the Z's are effective valences and } is a numerical factor

equal to 0.525. r, is the nearest neighbour distance, § is the

12
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‘mass density and the c*s are the familiar sound velocities,
In all of these classical theories the isotopic mass
)

dependence of Do is ﬁi, which is typical for all classical theories,

Usually they do not show any mass dependence in activation energy.
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Ce Quantum theories

One of the first papers devoted to the quantum mechanical
diffusion of massive particles in solids was by Gosar [10] . He
studied the interstitial diffusion using a temperature dependent
Green*s function method taking into account the interaction between
phonons and impurity atoms. However, Gasar‘s model for the ion-lattice
interaction was much too simple to correspond to real solids
because he used a one-dimensional model with harmonic wells and
his quantum states were those of a harmonic oscillator, Gosar
recognized the existence of allowed energy bands, whose widths he

evaluated employing the WKB-method obtaining for the band (s)

17 _
se(s) = L, (16)

where Ejs) is the energy of the bottom of the band and U is the
height of the potential barrier, 1(s) is approximately equal to
the width of the potential barrier between two interstitial
cavities.

Andreev and Lifshitz []ﬂ studied the motion of crystal
defects, impurities and vacancies, quantum mechanically in a periodic
lattice at low temperatures showing that they move practically
freely through the crystal. They exhibited the temperature depend=~
ence of the diffusion coefficient from low temperatures, where

band motion is predominating, to intermediate temperatures, where
D suffers a minimum because of interactions with phonons, up to

high temperatures, where the activation type exponential 1s pre-
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valent (classical diffusion),

At the time of publication of their study several papers
appeared, where the motion of impurities or vacancies (defectons)
were examined quantum mechanically (e.g. [_12], [13_], EMJ and [_-15] ).
To these papers belongs one by I'lynn and Stoneham f16j. They con-~
sidered the motion as hopping between localized eigenstates ﬁ, of
the particle using perturbation theory. In their approach the
saddlepoint itself played no important .role, only the localized
initial and final state wave functions were relevant, Naturally
the overlap between these states in the gaddlepoint region is the
principal factor in determining the hopping probability.

They calculated the hopping probabilities in terms of the
matrix elements Jpy of the interaction potential between the ion and

the lattice
t 2
Wep = '—1—’2‘1—%‘} e"”{‘:fﬁ'ﬁ?‘[(2%*1)(‘05”33 1)+

+ 1 sz‘nwiﬂ} . . (1%)

Here J = 4y Wintwﬂ) and @z are the normal frequencies of the
lattice and ny corresponds to the phonon occupation numbers,

The AO,— are equal to the changes of the normal-mode (mass-weighted)
coordinates of the lattice,

Flynn and Stoneham approximated this integral to obtain
different expressions for the high- and low-temperature regioné. The
preceding result was derived under the assumption that Jpp, is in-
dependent of the lat-tica configuration and therefore they also calcu-

lated, in the latter part of their work, the role of lattice-activated
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processes, In lattice~activated diffusion the interstitial atom
moves unhindered as the surrounding atoms fluctuate to "open®

the barrier. In this case the potential barrier and the activation
energy respectively can be very low, The theory of Flynn and
Stoneham still leaves open the nature of localized states, which

is difficult to determine and is strongly dependent on ion-lattice
interaction,

After the investigation of Flyﬁn and Stoneham a series of
papers appeared devoted to studying the motion of defects in crystals,
mainly vacancies and interstitial impurities, Of these we can
mention Kagan and Maksimov [17], Kagan and Kiinger (18] and Klinger
[19].

Kagan and Maksimov [17] explored quantum diffusion in
extremely narrow bands, whose widths A€ are small compared with
typical phonon frequencies, They derived an equation of motion for -
the density matrix including the interaction with phonons, Starting

from the standard equation for the density matrix ¥

120 = 11, ¢], (19)
where E = H| + H, + 7’ and Hy is the Hamiltoninan of the particle

in the periodic poteatial, K, i1s the lamlltonian of the phonon
subsystem and H° is the Hamiltonian of the particle phonon inter-
action, Using the particle density matrix p= Trp and V = H - {H) they
transformed the differential equation to an integral equation énd

firally obtained in the site representstion a differential equation

QU

shimp+E[Hor] | =-Is4 (19)

b

¥
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where

) i
Zfz( cS (E.( E/A) {VMS Vsl’ $11h * VI:S Sh E_QV“%II}.
(20}

P
Here Vo7 means a double matrix element with respect to phonon
states a4 and localized states centered around sites W and §

respectively. The function %gx) is defined as

S (¢)= (x‘q') ' (21)

¥ equais

zrz'.(IV,pl J(ex-E5)> (22)

PR

and E, is a phonon energy.,
One of the basic assumptions in deriving this equation was
that the characteristic time within which the density matrix ‘ﬂ

"12 5)

changes (10-?...10 is large compared with all the character

igtic interaction times (<:"<1O"15 s). Recognizing that the off-dia-

gonal matrix elements of V in the site representation are very small

theéy obtained

Ims = 0w fas (23)

2 as  BA as ,pA LS INT L
.O.;';,;; T‘ Z_&” (Ea-E,a){wi'm Vﬁﬁ*_\{m Vﬁﬁ—z\éa'ﬁ%ﬁ j,

(24)

(o)
where j;“ is the phonon equilibrium density matrix, because we can



18
clearly agsume that the phonons are in equilibrium with the impurity
atom, Iﬁﬁ describes a kind of z collision integral and determines
the attenuation of the off-diagonal elements. Clearly I)mﬁ deter-
mined by the intrasite scattering has nothing to do with the overlap
bgtween the states of the neighbouring sites., Because f]ﬁﬁ = 0, Iﬁﬁ

has to be calculated more accurately to nmecond order, as was done in.ﬂﬂ

Inm = Z ‘;y(Eu—E/s) ,Vﬁ,,—gl_?'(ff o f1§§)' (25)

This gives the attenuation factor for the diagonal elements of the
density matrix corresponding to intersite scattering in noncoherent
tunneling, Approximating further these expressions Kagan and

Makbpimov. obtained finally for D

D = DCD"\ + Din(_oh ’ (26)
where
r 2
Dcoh = /-13-9_5_*;?' (27)
Dincoh = z « Z t") ﬁ*;l d(Ex-Ep) (28)

h means here the matrix element of H' between nearest sites and z

the number of nearest sites. The frequency _Q, equals ﬂm;, =_D_ﬁ_-ﬁ=-ﬂ§
where g is the difference between neighbouring sites, m=-N=g. Dcoh
derives from the coherent tunneling of the particles and is limited

by the correlation-breaking frequency or attenuation frequency

of the non-diagonal elements of the density matrix., The correlation
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breaking is due to intrasite scattering by phonons and the tunne=-
1ing happens without the assistance of phonons. In contrast to
this is the incecherent diffusion, in which tunneling into the neigh-
bouring site takes place through excitation by the phonon system and s0
D

incoh
that the particle distribution in the intra-well levels is of the

is determined by intersite scattering. Taking into account

Boltzmann type, the diffusion coefficient can be written
s sy ~€s/bT -t : 2
p= Y(D+ D))= (23)
5 f

Z = D¢ AT (30)
J

and this gives the familiar activation-type exponent at high
temperafures, where the overbarrier diffusion is strongest.

Kagan and Klinger [18] developed further the previous
method by more detailed calculations and by using a two-phonon
coupling as an interaction between the particle and the phonons,
Klinger [}é] revised the theory making it more general and using
as interaction a multi-phonon coupling. In the following both of
these theories shall be rewievedﬁparallel and we shall present a
few results, some of which will later be used in this study.

Kagan and Klinger showed that the basic scattering mecha-
nism limiting the coherent diffusion is due to dynamical destruc-
tion of the bands, which is caused by fluctuations of the relative
shifts of energy levels between neighbouring wells owing to the in-
teraction between the ion and the phonons. They showed too that at
high temperatures and at practical concentration of impurities

the overbarrier diffusion is dominating.



Kagan and Klinger Cjé] started from the same eguation of
motion for the density matrix as Kagen and Maksimov, where their
Hamiltonian was H = H, + H' . Here Hy is diagonal in the phonon states
and H* is off-diagonal corresponding to the interaction with phonons,
They obtained, after similar calculations, the same result for Il, ’
which corresponds to two-phonon intraband scattering. Kagan and
Klinger have evaluated (), (after this called flib) approximately

at high temperatures within the Debye model

= (BT o (2], o

) Wp

AL,y 18 the characteristic gap for the bands, This result will later
be used inrconnection with the relaxation of the particle distri-
bution among the bands (in fact the distribution within a single
band).

The expressions for the coherent and noncoherent (hopping)

diffusion coefficients become of the following forms

5 Zaz‘ﬂi 1?"
D. = ~ 20 (32)

being the approximate coherent part and

R A I C +

Here q: equals the coherent bandwidth and

vy = X e et

2 k:T)
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fr = B GOF (1-es@g)(iezm) 69
A \

and

Here &, is a normal mode frequency with wavevector f and polari-
zation & having the equilibrium occupation ii,.

Kagan and Klinger approximated these equations in order to
obtain pumerical results for real physical systems and after summing
the contributions from all overbarrier bands at high temperature they

gave the result

2R3 AT Wp (3%)
D, = EX\2m iz 26,

h
10 is the width of the barrier (o) and Wp-h describes the typi-
cal underbarrier band gapi AE is the same for overbarrier bands,
With this result in mind we shall gstimate Do numerically in section
3 ce

Finally we can mention the recent guantum approach of

Gorham-Bergeron [ji}. He applied the Kubb expression for D to the
problem of motion of hydrogen atoms in metals, He used as inter-

stitial atomic wave functions harménic states obtaining for D

TTH* kT _ 1 i -2 Hw

R | _ + 44w —
D= Ve, 15um ©*P| aer(Es+ 2 HE L)
%)

(38)



22

where

' ' (39)
b= (Fx

b being the jump distance and Eb is the binding energy of the
lattice deformation caused by the interstitial, #;iﬁ“) describes.
approximately the height of the potential barrier Uo'

In the following chapters we will represent, in more
detail, an application of some of the preceding quantum theories to
an existing and experimentally important diffusion problém; lithium
in germanium and silicon.

Section a. in chapter 2 deals with the band structure of
an inferstitial in the lattice and shows how to calculate it when the
interaction potential is known, In section b, the diffusion coef-
ficient is calculated using Boltzmann‘s transport equation and
the respective relaxation time is taken from Kagan and Klinger's
theory Just rewieved., Chapter 3 section a. is devoted to study the
suitable potential model conforming to experimental activation
energies, In the next section b, the band structures are calcu-
lated in detail and in section c; are the final expressions for D,
The resulting band structures are shown in appendices F and G and
appendix H shows the isotopic dependences of E, and A€ , Chapter
L discusses the results obtained and compares them with experimental

values shown in table 3. in section 3 c¢.
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2 DIFFUSION IN NARROW BANDS

ae Band model for interstitials

When an interstitial atom or ion moves in a perfect
periodic crystal it experiences the lattice as periodic even in
the case when it distorts the lattice arocund it over a large volume.

By Bloch's theorem the particle behaves according to

F (4o
g (F) )

. ik
‘fjk-(r) = e
where uE(f) is periodic in the lattice, Fluctuations of lattice
atoms owing to thermal excitations can be handled in this model
as perturbations although larger than in the case of electrons.

Using the Born-von Karman boundary conditions we obtain

the allowed k-values in reciprocal lattice

— v ql
F=7yny, 1)
i N
and for the densify of k-values v Because there 1s spin-
ap - PoC P
degeneracy due to high temperatures, the density of states in energy
is twice that of the electrons e.g., in the case of free particles.,
The strongly repulsive potential between interstitial and
lattice atoms causes the bands to separate and they become ex-
tremely narrowe. The narrowing is mostly due to the large masses
of solute atoms compared with electrons (m~103...105me). The widths
0f the bands can easily be evaluated to be

24%7° (42)

S € =
m¥ as
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by supposing the bands to have a simple free-particle-like (see D1])

dispersion
- o 'ﬁ"kt
gh(‘:) = Eh- + m, ("fﬁ)

n is the band index and m is the effective mass in band n.

The width of a band tells us the size of the overlap of the
interstitial Wavéfunctions between neighbouring interstitial sites.
Since the velocity of a Bloch particle in a band is determined by the

relation
Un(E) = 7 % Enlk), (44)

ﬁe can infer that in these bands the velocities are small, of the
order ZTTﬁ/ﬂéo. As long as there exists any overlap between the states
of the neighbouring sites the particles will have finite velocities to
move freely through the crystal. At high temperatures large fluctua=-
tions scatter the particles and their average free path becomes
shorter than a lattice constant a,e

We can use as the Bloch wave function a wave packet composed

of all Bloch states in a given band

—t
—

.y ikF
Y. (F) = Z HE,(?) e ’ (45)
k =
k
provided that up(¥)=0 when J&-K1> Ak, This wave packet is localized
in E-space around the value k and in spatiazl space we can use the
uncertainty relation with the uncertainty in k of the order of the

size of the Brillouin zone a'ﬂ'/aO (sce Gartia~Moliner [20])
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a
Ax Ak 2+ = axz 7, (4¢)

This certainly localizes the particle within one primitive cell.

The Schridinger equation of a particle in a periodis repul-
sive potential can be solved by substituting for the wave function
a -set of plane wéves with constant (in épatial variables) coefficients

corresponding to the Fourier-expansion of the function

WYir) = Z C3 e'-‘a"?' (47)
9

This is the most straightforward (andlmost laborious) method to try
and it has been used in this study as wec are lacking methods to cal-
culate bhand structures in repulsive potentials for massive particles..
We can expand the periodic lattice potential in a similar way (the

explicit form of U(r) will be discussed later)

)

UF) = Z UE QK'V, | (4 8)

3
-t : SEF (49)
= — [dF U

UE Ve c£” © ) '

Substitution and change of summation variables give (see app. B)

L

c{efing‘ngzu_E;.+-(%%%(l;‘1?)24‘t% *-E:)c%é'zw l =0 (50)

From this relation we can solve f=ﬂ@ in the first Brillojiun zone



by expanding the determinant, The function takes the form

ko F (50)
yE = e 7w |

KF (52)

Ld

wf= 2 g €’

The resulting band structure contains in general some levels (at
least one) below the potential barrier and the rest of the bands are

at higher energies, see figure 4. below.

Vo

Figure 4, Typical energy bands
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‘e Calculation of the diffusion coefficient

The narrow bands of allowed particle energies are occu-
pled by interstitial atoms and due to the high temperature they obey
classical Boltzmann statistics, The degeneracy temperature is very
low for massive particles (compared with electrons) 3 e,ge. for Li

atoms T =~10° and even for H-atom it is less than 70 *K. The

deg

equilibriym occupation is the Boltzmann factor

-3t
fey = <. )

The mechanism that brings the system to equilibrium after pertur-
bations is particle-~phonon intra-band scattering. Interband scat-
tering gives a much smaller contribution to this due to the large
number of phonons needed for the process (2-20) depending on the

band structure, Interband transitions are possible because’ the
transition between energy levels differing by AE can, by the un-
certainty relation, take place wiﬁhin a time period At::ézg (n110-155
for band gaps of order 0.4 eV) by absorbing or emitting the mumber
of phonoms necessary in succession (single phonon interaction

times are shorter than 10"153, see [19]).

Klinger has calculated the relaxation time due to inter-

band scattering and he gives (see Klinger [19))

v
Qi = aE (LD (54)

- (5%
'tlb = Ill; )



where AE is a typical band gap and ¥ tells how many phonons are

needed in the process

&E (56)

b= % Wph

In the Debye model (Wpha®p  for most phomons) we can evaluate

this and we have

2 é
N, = 10 ... /o

A (v= 3... 20) (5%)
‘ 3

depending on the band gap. This compared with the intraband two-

phonon inverse relaxation times (details later)

- 8
Qi = 10 10" L | (58

is an extremely small factor and we can neglect it totally in the

calculagtion of the relaxation time

1}

1 |
iiet Tis Tie T i, (57)
Kagan and Klinger [18:) and Klinger [igf] have stated that
at high temperatures the overbarrier noncoherent diffusion (exci-
tation of phonons) is dominating and we can neglect the underbare
rier contribution. With this in mind we c¢an calculate the mobility
M for interstitials in the relaxation time approximation assuming

that the dominating mechanism for relaxation is a two-phonon intra-

band intra-site scattering as Klingor et »l, have calculated.
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We have, in appendix €, calculated the mobility by means
of the Boltzmann transport equation under the action of a small
external field on the charged interstitial ions. The Nernste

Einstein relation

#:MPEQD (éo)

has been used to connect /t and D, Here M is an empirical coef-
ficient which depends on solute-solvent pairs, In the case of Li
in Ge and Si, M has been observed experimentally to be equal to 1.0

(see Shaw [21] ). We obtain

€2¢C,
2 - °
de Vg w0s® T(E) FO(R) (é1)
D= bt 620 ’
Jak £®)

B2,

The denominator acts here as a partition function and normalizes

the numerator.
To transform D to a form suitable for numerical calicu-
lations we need to do some approximations. First we must take fﬁﬁ)

outside the integral sign because the variation of f(k) in extremely

narrow bands is vanishingly small and we get

[ﬂhd }'

o _ £ - z . _
Y e v wste ;@ (62)
D= 2 ~pi; bds ’
S
i=! 8.2,

where EJ means the lower edge of band j. The index n means naturally
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the first band which exceeds the potential barrier, Next we shall
approximate the Brillouin zone (the first one) with a sphere of the
same volume Vg w£thout making any crucial error. As can easily be seen
the terms j ® n + 1 in the numerator are small compared with the
dominating j = n term due, of course, to the exponential functions

in front of the integrals. This allows us to neglect all other

terms provided that the difference between &¢ and €4 is con=-
siderably more than kT.

With these approximations D becomes
m £ AanJi}‘ 2
5 P [fak g s Tjlk)
D g n Ve £ ?
Vg & erfy

1

Em = Eh ﬁ kTo (63)

Now we can use the relaxation time calculated by Kagan and Klinger
[18] and Klinger EI9] ’ [2?;_] , which is based on two-phonon intra-

band scattering
kT Y wa \'
b]
() o | — 6
i (ﬁ&)o} w"(w,,), (64)

where ﬁﬁ¢ represents the typical (dominating) bandgap. Because
12% is band-independent and does not have any k-dependence we can

take it in front of the summation

" P4 (dT vz cost
- Los'e
D~ L., jb’a : (65)
Qi vy £ &5 :
g =1

This expression for D we ¢an use in numerical calculations in the
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next chapter after we have obtained the band structures,
The temperature dependence of D is primarily due to the
exponential functioms from two sources as can easily be seen; the

- - f
term e'P& in the numerator and eP i in the denominator giving

D o é‘ﬁ(gﬂ_gl) (66)

and we can in most cases neglect the other terms, This is valid, of
course, when assuming that the band gaps are relatively large (AEYKT
and kT >> 0), If two or more bands are very near each other, we can
handle them as 3 single band (energy-averaged in some suitable way)e
The other bands act only ab very high temperatures (often above
Tm’ thg melting‘temperature) causing the otherwise straight-line
behaviour in an Arrhenius-plot (logD vs. /A) to bend. Clearly Eh—El
gives the classical activation energy, which in many cases is
considerably larger than the height of the potential barrier,

The pP-dependence of Ilib will be omitted in this study
because the value given by Klinger et al., is only an estimation
at high temperatures and it must be calculated at one single
temperature T* in the middle of the temperature range at hand,
The same applies to Do’ which Kagan and Klinger gave and where we
have the dependence Dou/gﬂk. This fact also strains other theories;
we remember the theory of Nardelli and Reatte and the result of

Gorham~Bergeron, where T has to be fixed (see also Flynn and Stone-~

ham [l@)).



3  APPLICATION OF THE THEORY

a. The potential model

The preceding theory is in this chapter used to calculate
explicit numerical expressions for the diffusion coefficients of a
lithium ion in germanium and silicon by_first determining the inter-
action potential and calculating the energy band structures., The un-
known potential parameters are fitited to achieve experimental acti-
vation energies after which D is available through application of
the previous equations.

The lattice potential seen by the interstitial has the form

e

UF) = 3 VF-Ri-dp) (€7)
R;i ‘

AVfr) is the direct ion lattice potential, which consists mainly of
two parts; the dominating repulsive part coming from the overlap of
tightly bound inner shell electrons and the screened Coulomb inter-
action between nuclei and the small- attractive part coming from the
polarization of host atoms surrounding the interstitial and pos-
sibly from other effects, e.g. van der Waals interaction. The distort-
ion in the lattice structure caused vy the interstitial around itself
will in general bring a contribution to the migration energy but in
the case of lithium we shall neglect this term because lithium has
a small ionic radius (~0.60 &) and is generally considered to have
only a very small distorsive effect. All attractive terms will also

be neglected in the following due to their smallness and because
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their behaviour as a function of r is relatively flat {see EEG]).
The lattice potential U(T) was calculated with a computer

using several models for the repulsive potential teking into account
the contribution of several million surrounding atoms, The points in
the primitivé cell, where the potentials were calculated in double
precision, are shown in appendix A. The tetragonal site T is locateq
in the center of the conventional ¢ell and has four nearest neigh-
bours and the the hexagonal sites are located in the center of the
six member ring composed of the lattice atoms. These sites are pos-
sibly the only points, where the lattice potential could reach its
minimum (in case of repulsive potential) the other of them working
as a saddlepoint, through which the diffusion occcurs. In all of
the calculations made it was revealed that the teiragonal site had a
lower lattice potential, thus being the equilibrium point and the hexa-
gonal point was the saddle point, Thus an stom residing at the T-site
has four nearest equivaleni T sites availnble to go to through the
respective i site (z = 4).

| The repulsive potential has acguired several forms in the
theory of migration of atoms in samiconductors, A model called the
Born-Mayer potential (see Welser ’-Zh]) was earlier used in studying
the atomic migraticn, It corresponds mainly to the repulsive action

of core electrons and therefore has no diverpging (r_1) behaviour

Vyi= A€ (69)

L]

In this work calculations were made with VPM but it had to be

rejected due to its weakness, that is the potential barrier height
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was far too low compared with experimental values together with
the band model activation energy, which was calculated based on this
madel,.

The second model émployed in the calculations was the ordinary

screened Coulomb potential (Shaw [26] and Nardelli and Reatto [9])

Vet = AT “

Here }A is . the screening length defined by the solute.concentration

and varies from 2 A to 4O A. It has been evaluated by Dingle [?f)and
Kennedy [5@]. Dingle‘s suggestions varied from 40 A in dilute solu-

tions (calculated with his formulas) at ahout 1000 K temperature,

to 7 & (Ge) and 4 A (Si) at large concentrations (near the limit of

solid solubility of Li). Kennedy proposed values between a, and 10 i
both for Ge and Si at practical concentrations,

The prefactor A has the form

A= T (70
H o

€ being the dielectric constant Z. and Z? being determined by

1
Pauling {29} and Swalin [28] from an empirical standpoint. Pauling
introduced the concept of imperfect screening and a value of the
écreening coefficient O.4 was found for electrons in valence orbitals
and for deeper lying ion core electrons a value egual to 1,0,

Because Ge and 8i have four valence electrons forming the tetra-

hedral beonds this rule gives effective valence Z. = 2,4 for both

b
atoms, Lithium exists in a singly ionized state and its walue for



z, will be 1.0 (if Li could be neutral in the lattice, 2, would
be 0.6)e The values of € used in A are 16,0 for Ge and 11.8 for
Si. The resulting band structure (only o few lowest bands are

shown) for Li in Ge is shown in figure 5 as a function of A. They -

are calculated with the methods presented in the next sectiomn,

—
el

- -

——

-

0 5 1.0 1.5 2.0 AE)
Figure 5, 11 lowest bands of Ge using Vc

The broken line represents height of the potential barrier calcu-
lated with the aid of lattice sums as described earlier, But the
experimental value for Uo’ the activation energy, is of order 0,5

eV so this model can not correspond to reality and it must be like~
wise rejected, In fact we can modify this potential to achieve
satisfying results, The'screened Coulomb potential corresponds
mainly to the screened electrostatic interaction between positively

charged nuclei without taking into account the repulsivity of ion
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cores and weakening of screening at short distances (r<.rI + r1s
where rp = ion ‘core radius of Li A 0,60 A and ro o= r(Ge)y 1.22 A
and for Si r(Si) ¥ 1.17 ﬁ, see YWeiser Eﬂﬂ). We can understand
that the macroscopic dielectiric constant € must diminish as the
interaction distance r becomes of microscopical order of length
and it must approach its wvacuum value 1.0 due to weakening of the

screening, This transition from € to 1 can be made in the spirit

of screened interactions and we assume the following exponentially

-\
damping form for € (r)

1 = L 1+ (e~1 e_“r} (?I)
€(r) ‘=( ) ‘

This gives € (rf'::b&nat large distances and unity at very short
r and this function can be substituted for Yz in the expression

for A

Vi) = Z 2, e° e—’\r(‘!-i—(Ev!)é'ar) (72)
YTeE & r ’

This modification strengthens the potential at very short dis-
tances {r5 Vi ) taking at the same time into account the pontri—
bution from the repulsive cores. It also gives us two adjustable
parameters. As can be seen from figure 5, the first overbarrier

bands do not much change as a function of A and this applies to

36

the corrected model as well., The main variable is ¢ and some typical

graphs of bands calculated in this new model can be seen in appen-
dix E as a function of A and &. The potential barrier height has

been shown in one of the figures as a broken line it being in the
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gap between the third and fourth band in all cases calculated., Two
‘more accurate graphs, used in the final determination of & , are
shown in figures 6. and 7. There the potential barrier height has

also been shown as a broken line,

12

eV

1.0

i i 1 ] | i

11 1.2 7.3 7 o (A7) s

Figure 6. The band structure for the corrected potential (Ge) as a

function of ™.
Clearly this model gives realistic activation energies and
we Can now pick the proper values of A and ®, ) can be fixed by

1 for both Ge and Si

the previous arguments to have the value 0,1 A~
corresponding to a screening length 10 A being far from critical (see

also appendix E), Thus the principal problem lies in choosing o,
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It can be done by comparing the resulting activation energies with
the‘experimentél values (the energy is calculated from the difference
between the first overbarrier and the lowest underbarrier bands),
which are about 0.53 eV for Ge and 0,66 eV for Si. An extra criterion
in choosing the ratio of the parameters o (Ge) and 0(Si) was the
fundamental ratic ao(Si)/ao(Ge)nv 0.96 giving the length scale ratio
and thus & {Si) was fixed by this ratio after the correct value of

o (Ge) was obtained from the graphs. Tﬁis method gave values of I

for Ge and S8i 1,45 and 1,39 respectively (aO(Si)/ao(Ge) = o(Si)/e(Ge)),
The resulting value of w(Si) produced a value of activation energy,
0.64 eV, very close to the experimental value (see table 3, for all

numerical values).
Fipgure 7. The band structure for

the corrected potential (Si) as

a fuunction of &

1.1 12 1.3 19 o« (17') 1.5
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b. Calculation of band structures

As the potential model had been determined the band structure
was calculated according to the principles shown in appendix B,
In this section we will give some detalls of the method.-

The complex determinant used was of 59 x 59 dimension
defined by the 59 shortest reciprocai lattice vectors divided into

six groups by their length (see table 1 below) .,

Table 1. The 59 shortest reciprocnl lattice vectors

e gz | 9ri_ | 4T3
length| © &% 7 | o o a7 | a.
humber |
of 1 8 6 /12 24 4
vectors

The reciprocal lattice vectors belong to the reciprocal lattice
of diamond structure, which is body-cenlered cubic of cell side
'-Ir‘fyao. The diamond lattice itsei:f is face-centered cubic with the
basis @, = (0,0,0) and 52 = a,/4(1,1,1), sce appendix A, The

existence of a basis causes the structure factor to differ from

unity and in this case it is

-

K-d, %g:(”a*'nz'*”s)

_§E=1+e1 = 1+e

(#3)

are defined by the primitive vectors b

where the n 1

i



afl (_2 , P, 7 - 2M (LT uEy b =30 (FLR R
= 2L (-1 + | +k = 210 (1 k), b, = 1A -k
6] ab( J ); ‘62. ao( J r ¥z de J(T}l-{),
— L. _ YT 7 " A
=};n,, = E;(V,z«f*t/,__]-rx/_,’k), (#s)
where tﬁ = %(nT + n, + n3) - nj’
3
2.V = L(n+n,+tng) | (3¢)
! ‘ .
This gives for SK
2 Yni =22k =44,:8,£/2. .
<. = 1+1 = 1,5 9,13 ....(or=3-7.)
g = Ya1-1, — 3,715 . (or=1,-5, =
0 ! ::t?,i:S,:t/Du..

(#%)

Calculations were made with reciprocal lattice vectors
less in number than 59 but satisfactory convergence of location of
energy bands was achieved after 51 vectors, The preliminary calcu-
lations consisted of determining tﬁe band locations with suffiecient
accuracy with the k-vector in the origin. #4s the final choice of the
unknown parameters was performed, the dispersion relations could be
calculated explicitly., The E—space behaviour of £(E)} in the bands
was examined in the first Brillouin zone for several symmetry direc-
tions (see figure 8) starting from the origin and entering the corres-
ponding symmetry points. Due to the large number of bands to be

studied only three crucial symmetry points were employed in the
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calculations (W, X and L), This was later justified by the ex-

treme isotropies of the bands.

N

Figure 8, The first Brillouin o
zone and the symmetry points

To reduce the number of all symmetry directions belonging

to respective points, two symmetries were used (see [25))

£(-=) = E(R) , E(k +K) = £(k), (78)

The directions left are shown in table 2, below,

Table 2. (vectors shown in units ufr/ao) Symmetry directions
Wi = W L, - Ly X;— X3

(%.,%,0) (4. % . %) (£,0,0)
(2 ,-4.0] (5 .,-% &) (o, 31,0)
(£.0 %) ) (0.0, %)

(1,0,-2) (7, &."%)
(4,0, %)

(&r’é ‘O}

Naturally all calculations were based on finding the zeros
of the determinant with various values for parameters and energy.
The determinant behaved very violently around its zeros as a function
of energy and this caused troubles in finding the exact points of

vanishing as the parametcrs were varying. The value of the determinant
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could change from 10“2 to -1042 within a change of E of the order
10'3 eV and back within a bit larger (10"'2 eV) interval behaving
as a ©-function about most of the zeros,

To approach the éxact zero of the determinant a method was
used, where the supposed energy range was divided into parts by a
simple halving method until the zero was within a sufficlently small
interval, One restricting factor in choosing the method was the number
of determinants necessary to calculate.to obtain the next iterated
value of the energy (e.g. derivatives). The number of extra deter-
minants had to be limited due to the rather long processing time for
the computer to expand one single determinant,

With these methods the behaviour of £ in k-space was deter=-
mined and in appendix F we give the band energies for the six lowest
bands and in appendix G we have the band structures for four lowest.
It was not necessafy to represent dispersion relations in all symmetry

directions calculated due to the observed spherical symmetry.



¢, Results for D

The numerical values for the diffusion coefficient will
be calculated in this section by means of the transport theory,
equation (65), and the result of Kagan and Klinger, equation (37).
This will take place after we have obtqined the dispersion relations
of Ii in Ge and Si in those bands, which participate in diffusion
(essentially bands 1 and 4 for both cases),

The inverse transport time (1, , from the theory of Kagan

and Klinger, shall be used as the relaxation time, In its definitionm,

43

equation (64), the typical band gap fiwp will be defined as the average

of two essential gaps (tu,zIEKZE‘). In this work it will suffice to
use Wy and Wy representing the typical gaps (We zm Yo These
will be obtained from the calculated {fitted} band models as well
as the difference £, =~ %, needed in the cxoonent (see table 3. and
appendices D and F). |

For the temperature ™ we will use values in the middle
of the experimental temperature range (T’ -~ 900 'K for Ge and T" =
1100 *K for Si). This applies as well to the result for D0 of Kagan
and Klinger,

The bands calculated for lithium atoms in germanium and
silicon (see appendix @) resemble the frec-particle bands and the

effective masses for all bands were calculated by fitting a para-

bola to the graphs

2

£ (k) = Ak, (79)



In all bands it was stated with rufficient accuracy (0.1%) that

o | X
w'= mpg both for Ge and Si.

Taking in the result of transport theory only the first
overbarrier band into account and neglecting all others except the

lowest in energy (&,) we obtain

-pE B
D=DQ € oy bo = En"g, ) n_—.‘,’, (90)
where ‘
ﬁandqz
dk vz ws?e 2,2
D - _— _ﬁ__é_s_____ (
° 0y Vs T oY

WA

Here ks is the radius of the equal-volume sphere in k-space. By using

3 3
_{anm) _ 4fks
Vs =5, T3 (82)

we have in terms of the volume of the primitive cell vc

e orin
ks = 2TV gm0, (83)

and we have the final expression for D0

Y
E) _ 91T2‘Q370k)3152
° T smt 11[6

(84)

Ao (85)

0u = (G655

The D, of Kagan and Klinger, equation (37), can be modified

according to the present band model. From the band locations in



45

appendix F we observe that the band gaps are quite similar below

and over the barrier, Thus we can set

i wp = AE, (8¢)

1, can be approximated by  , the jump distance, which equals aOJEVA

in the case of diamond structure, so finally

E.3
D, = lztx‘{z;rn , (CX))

Now we are in the position to give numerical estimates for D0 and

table 3. below represents these values calculated by means of the
data given in appendix D, In table 3, there are also some experimental

values and results from other theories.,

The isotopic dependences of HE, the width of band number 4,
and the activation energy EO were also studied in germanium by varying .
the particle mass within limits +100%...-50%., Results of this calcu-
lation are shown in appendix H and we can see the fact (which is
verified by an accurate numerical fitting) that the bandwidth beha-

ves as (symmetry point WG)

AC(H) = F - (82)

The activation energy obeys the law equally accurately

Eo:Ti—-o-l“C’ (89)

*

To study the isotopic dependence of Da in the transport theory, we



Table 3, Results for D = Doe"(5 Uo

L6

D, (Ge)en™/s [o_(51)en/s U (Ge) eV |U_(S1) ev
thie work 3,7 10;3 101 1072 this work } 0,53 0.64
transp. the | transp. th.] (band model
eq. (84) eqs (84) fitted) (E4y- € (Eq -E)
7e2 10772 7.6 1072 - -
Kagan,Kling-{ Kagon,Kling
er eqe (87) |er eg. (87)
-3 -3
exp., results|{ 1.3 10 2.7 10 €XDe 0.46 0.62
[36] [383 results [36:] [383
2.5 1072 | 2.5 1072 0.51 0,66
G| 09, [ OB B9,
941 1070 |2.2 1072 0.56 0470
[56] B9 [53 )
-3
- 3.3 10 - 0465
[7) 7
-3
- bols 10 - 0.78
(3¢] [36)
other 1.7 1072|146 1072 pther 0,57 0452
theories 24 (25)ttheories [24] £
3,6 1077 | 2.6 1072 - -
£ 9
Outh 1072 | o.94 1077 - i,
i T 0o
must take into account the m-dependence of j1.i; (see bgﬂ)
_1
Ny o m*t ( 90)



giving for D0

3
Do ¢ m?*, 1)

The mass dependence of the result of Kagan and Klinger, equation (87},

has clearly the form

(g
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4o DISCUSSION

Now we are able to compare the results of our calculations
with the experimental results and other theoretical calculations,

As we can see in appendix D a1l calculated results for
Do’ both in trénsport theory and Kagan and Klinger's theory are of
the same order of magnitude as the exberimental values of Do’ which
are rather diffuse and lack preclse measurements over large tempera-
ture intervals, Other theoretical results are just as diffuse and
scattered as can be seen in aprendix D table 2. D0 from transport
theory is rather critical in the definition of W)y and a relatively
small change in it can shift DO by an order of magnitude,

The temperature dependence of S\qb is quite strong
giving DO a dependence ﬁﬁ, which has a too large impact on the
total behaviour of D as a function of temperature (see appendix I),
This anomaly was referred to in secticn 2,b, This shows clearly
that the relaxation time must be coleulotoed more precisely taking
into account corrections from all phonon processes in addition to
the two-phonon one,

The Do:s of Kagan and Klinger agree well with the eX-
perimental values showing that their theory is valid at high tempe-
ratures although the weak dependencelﬂ)u p% is not exactly in
accord with the experimental behaviour, which to a high degree of accu-
racy is a straight line in an Arrhenius-plot (see appendix I).

The isotopic behaviour of Do and Eo are in the transport
theory

H

D, © m 2 (93)
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+ B . (9%)

»

3>

E «
o
Let us for the sake of comparison recall rome other theories : Flynnm
and Stonehanm [16] have obtained in their theory the same behaviour

for Eo in their oscillator model and for Do the dependence mée“:’m.

Gorham-Bergeron [35] has achieved the same dependence for Eo also

and for Do he has the same result as Gosar [10] does

D -F-'a—- (95)

(-3 L]

Weiner [LLE] calculated hydrogen diffusion in metals also quantum

mechanically in a harmonic coscillator approximation and he obtained

Eooc—%+3 (96)

Klinger‘s theory gives the following (sce ref, [:19])

D, « ..é. , (92
Eoo(_r%-— +C . (98)

and finally the more general results of Kagan and Klinger [18] give

D, & mit 4o m (99)

It seems evident that guantum theories in general give dependences

Doof m® and Eoot’ mP + , where & =~- %...-1 or stronger and = -1,



This differs from the classical results, where D  is always exactly
pfoportional to ﬁi, E, having no m-dependence,

Experimentally the mass dependence is not solved because
we are lacking precise experimental results and large fluctuations
in this respect have been observed (see [43} and [y ).

The calculated bandwidtns and gaps differ from those calcu-
lated by WEKB=-theory in the article of Kagan and Klinger fﬂﬂ. For

germanium we have (at W-point) A€~ ';"»-1O'LF

eV and the gap is AE =
0e05a040slt eV (both for over- and underbarrier bands) compared with

the results from the WKBe-method

L€ = o len-u,) fb%c"i'r 2 167 eV (100)
AE ~ wj%eA 2 1053~ 10%ev . (101)

The widths are approximately of the same order but the gaps are much
larger than predicted by the WKB-method,

The method employed in calculating the band structures in
terms of plane wave expansions is very laborious and for future
calculations some tight binding method should be developed to
achieve resulis converging fast enough.

The relation aO(Si)/ao(Ge) = & (8i)/w (Ge) used in fitting
potentiasl parameters succeeded satisfactorily when the Ge-~parame-
ters were first fitted and fixed and this gave an activation energy
for Si very close to the experimental energies, indicating that
the potential model is possibly of correct form. Of course it

neglects the four bonds giving only a spherically symmetric pair
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potential (the bonds are implicitly contained in the effective
vélence).

It seems that quantum theories are able to tell us more
about the physics of diffusion in solids than classical ones but
at the cost of more complicated calculations. There are however
many questions for the quantum methods to answer, which classical
theories can not treat, e.g. the concentration dependence of D and
the motion of an interstitial atom in lattice dislocations and

grain boundaries.
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5. APPENDICES

Appendix A

Diamond structure and equilibrium sites

=}
1t

tetragonal site

1}

H hexagonal site
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Appendix B

Solution of band structure

We choose the Fourier decomposition for the wave packet
PR = ncg e’ (1)
3

Here Cf are constant coefficients depending on the wave vector g, The

periodic lattice potential will be expanded similarly

UF) = 2. Ug eiE'F (B 2)
E ’
where
K F
Uz =+ fd?e' U | (8 3)
Cell

and X belongs to the reciprocal lattice.

The kinetic energy term in the Schrddinger equation becomes

»n

3

IS
IS

and the potential energy term is

TS S
UW—'—% ?UE el Cieiir §+E—a §.'-;§

) JLZY Z‘i: Uz <5-% e (85)
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This gives us the Schrddinger equation

»

Zﬁii'F{(%—E)Ci *‘EE:‘UEtCi__E\} -0 (Bg)
L1

Coefficients of the plane waves must equal zero due to their

independence and it follows

t,.%2 ‘
(55 - €)es + LU ci-k =0, R

L

We will choose §:=E-—E , 50 that k will always lie in the first

Brillouin zone, and change the summation variable E'-" K-k obtaining

(ZL‘LY?\(E#R){—E)CQ—'E + ZUEl__E CE"E‘ =0 (B 8)
E! .

For this system of equations to have nonzero solutions the deter-

minant of the coefficients of C;_Z must be equal to zero (see [22])

detgp|Up g + (B (B=E) + Vo =€) dpi g | = 0 (89)
(R'# R) )
This solves us € = § () in the bands provided that the infinite
determinant is approximated by some finite one by taking a finite
number of reciprocal lattice vectors symmeirically around the

origin. In this way we obtain the dispersion relations in various

o4

directions in k-space. Now g can only have values k, k- K, k-K,, etc,

and therefore

—

Y (F) = Yoz g é = & T uz@,  (810)



We can calculate Uﬁ in a general casc as follows, the lattice

potential being of the form
UF) = 2o V(F-Ri-d;) (1)
ﬁj,{. '

Here ¥(r) is the interstitial ion-lattice atom potential and d,
describes the basis in the primitive cell, We recognize that the

integration over the cell can be chanéed to an integration over the

total crystal volume

]
Ug = @,

fdr TS ARy -d) = o [dr & TR M)
cel e v " )

and the variable of integration can be changed as

GEd . =R =
-1 ze: J/Jf'e. ’V(r):__ Sk% (B13)
[ v /Ua -

i

SK is the structure factor and VR‘ is the TFourier transform of

the interaction.

Finally we can calculate 1% for the potential model chosen

in section 3 a.

T =Ar _
Viry = Tz 1+ e €] (B 14)
o g R EM (1 temnEnr) R T
<
1 e~
= wTAlFTR * prgeR ], (B 15)

For the diamond structure the structure factor is simply

k.4

Sg = 1+ € d= a,(4,%, %) (B /6)

o
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and we have finally

€ —1

)[)iﬂi?' E)’— (A+&

2 +(R-K')*
(B1%)

(B 18)
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Appendix C

Steady state solution of transport equation

We shall examine the influence of a weak external electric
field on the distribution function of the interstitial ions and on
the current, from which we will calculate the mobility M The
basic assumption is the band model described earlier and knowledge
of the band dispersion relations £, = £, (k).

Boltzmann's equation for the distribution function is

f
& L‘.’dd .

o

(C1)

+

</

d (fz) = oF
a?f(k) Tt !C.olt

The collision term becomes in the relaxation-time approximation

gi' B e (c 2)
ot e, T 7

where T is the time of relaxation of f(E) and £°(k) is the equi-

librium distribution

_pE
& ¥

o) = S —rn (c3)
Z(B)
E(E) referring to all bands. The fiecld term is
2 - tvc = ZEE .y g ZeE . (g_ag)
3t L‘:’c[d = ke R S .
(cH)

Steady state solution of the transport equation is easily achieved

£L = ze(E-dview)(2) = ze Em)(3E) o)



This has an approximate solution in the limit of a small external

field

s §° +t2e(E 'Urc)g—i, (cé¢)

which becomes

fo (1 -CpZe(EB) £B) . (%)

The cﬁrrent density can be expressed in terms of £ as follows

€Exé, @ (c 8)
i=-2e (JdE Uz f&) ¢
I = eB,[?}. (TP

Here the integration over the first Brillouin zone takes place only

over those bands which participate in the current; that is bands

exceeding the barrier, which will be denoted as €2¢€%, 5o we have

€2 €,

f= ?'etfw_ (T -£)T £°(E) (c 3)

because the symmeiric f°-term vanishes in the integration and the
relaxation time has been considered to have some possible k- or
band~dependence,

On the other hand the density of particles (normalized

as the current) can be determined by

n=/f dE £ = f@ﬂprm, (¢ 10)
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The integration is here naturally over all bands and the small
antisymmetric correction term vanishes in turn during the integ-

ration. How we can define the mobility in the following manner

I'z/uiﬁ'z.e E , (c 1)

We have assumed 4 to be a scalar as always in cubic crystals (just

as D is too0). The preceding relation becomes

€z €, - _ €20
pre & o (T E)T§R) = pME [aEgm, (€0
2.2, B2

Let us take the scalar product with £ on both sides of the equation

and choose the direction of the field in the E«space along ﬁz-axis\

E2 &0 €20

pefir ' bs'o T fol) = Epm JaRLD) (c13)

This gives e
€2 €
il €20 ‘ (c %)
dE R

Now we can assume the validity of the Nernst-Einstein relation

M= M/:.ZeD (¢ 15)

and we have for D

E2E€s
dE v Lste TE §(z)
D = "11620IE . (CIG)

dk f°(%)
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. Table

Appendix D

60

of important numerical values and results

entity Ge Si, ref, or expr.
a, 5.66 A 5.43 A& (31)
v, 45.33 17 40,03 &7 /b
€ 1640 11.8 [9]
€. 8.85416-107'% F/m [
A 2,160 eVl 2.929 eVh Z, 7, €%/ (4Te,€ )
T 244 2.4 o], (33]
Z,(Li) 140 1.0 (5], 331
m(Li) 1.1526:107%° kg (ul
Final potential parameters fitted : V(f)=é_e-::r(1—(évlje-")
Y 0.1 471 0.1 4! -
o 1e45 5-1 139 i see appendixfﬁ
Lattice potential at sites T and H
Ey 1216035563 eV 18644387375 eV
ET 121.1728025 eV 185.8995916 eV see chapter 3 g,
OF 0.4307537719 ev 065391459428 eV AE = E, - Eq
- R LOsa 'qo-a range of calcu-
L ° © lation, radius
z L L number of nearest
equivalent sites
o# 900 % 1100 % (P850 2RR 0 # nign
temp. range
Wp 7.2077 10'% 1/s 8.7467 10" 1/s Nraew
Wp 4.7132 10'% 1/s 8.1827 102 1/s | (31]
Qi 5.3861 107 1/s 19115 10'0 1/s wo {—Bp}z(%%q

The fw; are the respective energies of bands with index i,
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Appendix E 61
Band structure of Li in Ge as a function of potential para=-
meters A and % {showing some cxamples of calculated depend«
Ences).
&= .4 (A7)
L E, exp.
i =0.53 eV
.;3 .1 2 .3 by (A-l)
___________ 1.5 (A ) e e = B0 &2

a5k
1 2 A i
ar 1 .2 .3 PN (‘-:)
________________________________ e e — e — _Eoexp
S
a= 2.5 (A)
A5 Pk
-0f -1 -2 3 N (£
Band structure of Li ir = o » funcfion of A with some values of the

parameter o .



Appendix E cont‘d. 62

Band structure of Li in Ge as a function of ¢
1.5
» with some values of the parameter ) .
E(eV)]| o
: A= 0.05 (A™)
1.0¢p
',I - - — = = - - =
. ; o Y] 10 ;c o (1")
15p
-
A= 0.1 (A )
1.0
ew== = Ug(A,x), the potential
barrier height,
.’- ——— ~ T T
" " i 1.0 YICTY &)
"-5#
10p
Jr

i —
4 1.0 1.5 2.0 2.5 “(A-l)

U 4s situated in all graphs between the third and fourth bands.



Appendix F

63
Energy bands of Li in Ge and Si
S’
Ge £ (eV) ¢
Uo is the potend T
tial barrier
height calcu- ‘
4 .4
lated as a dif- * 1.1046
ference in the
lattice poten-
tial betWEEH + e 5 am— too”
the hexagonal
and tetragonal
sites, ¢ 3130 10
s 5333
+a.8
-+ 0.7
“ E—
6410
+ 0.6
UD = .539} eV
S [ s S
1os 513/
U, = .4308
R e
1482 Loy
4 0.3
t o2
4ot
N 1=—="T""os0#
0428
4 1

O (I1l.664243 eV)

.0 (i€6.%3%029€V)
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Appendix G

Band structures of Li in Ge and Si
Typical dispersion relations of Li in Ge. in all other symmetry
directions in all bands the dispersions were the same as shown,

-
T ] ] T ! 1 }

Ly

BA¥D1 GE

Xy

(721,664843)
ev

[‘I

6.0
Hot
3.0
2.0p
1.0

E(eV- 10"‘")
50
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Appendix G contd
Typical dispersion relations of Li in Si. In all other symmetry

directions in all bands the dispersions were the same as shown,

3

C

iy
—y
vy
-t
(o)

- =
<
o

Xy

N (186.9320292 eV)

E (eV-10"")

6.0 1
2.0r
1ol

50F
40F
3.0



Appendix H

Isotopic dependences of EJ and A€ calculated from the

band model (Ge bsnd number 4)

Isotopic dependence of A&,

W direction

Ag > %
A= “l.‘o‘-m-"gv

66

1.¢

14

1.2

1.0

A
.n.

é.of
50¢
Hop
301
L0

got
1.0

oV.15"

bandwidth
AcE(Y)

.2
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Appendix H cont*d

Isotopic dependence of EO.

.._‘,
3

|r|-sl . .
0°Z ”: ”E »T 3 05 g b A h* T
N° 050g¢” 7
AP .“.ID~ ‘0§ = -
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g+ =M

£5088°

02CEs”

£90¢s5’
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[ Temperature dependence of DIR)
\ in various cases in Ge

\ Graphs are calculated from the
Ge band model and the experi-
mental points are taken selec=

\ tively from [36], [37) ana [381.

DgDDﬁh e_ﬁu.

0. # 0, (13)
U, = 0.53 eVv




i

2]
&)

G4

6+ REFERENCES

S. Glasstone, K, Laidler, H. Fyring, The Theory of Rate Pro-
cesses, (McGraw-Hill, New York,1941)
C.Wert, C. Zener, Phys. Rev. 76 1169 (1949)
C. Zener, W, Shockley (Editor), Imperfcctions in Nearly Perfect
Crystals, (Wiley,New York,1952)
C. Wert, Phys. Reve 79 601 (1950) | .
@. Vineyard, J. Physs Chem., Solids 3 121 (1957)
S, Rice, Phys. Rev, 112 804 (1958)
S. Chandrasekhar, Rev. Mod. Phys, 15 1 (1943)
H. Glyde, Rev. Mod. Phys. 39 373 (1967)
6. Nardelli, L. Reatto, Physica 31 541 (1965)
P. Gosar, Il Nuovo Cimento 31 781 (1964;)
A. F. Andreev, I. M. Lifshitz, Sov. Phys. JETP 29 1107 {1969)
J. Hetherington, Phys. Rev. 176 231 (1968)
M. I. Klinger, Sov. Phys. Dokl, 13 1131 (1969}
Re A. Guyer, L I, Zane, Phys, Rev. Lett., 24 660 (1970)
M. I. Klinger, Rep. Prog. Phys. 31 225 (1968)
C. P. Flynn, A, M. Stoneham, Phys. Rev, Bt 3966 (1970)
Yu., Kagan, L. A. Maksimov, Sov, Phys. JETP 38 307 (1974)
Yu, Kagan, M. I. Klinger, J. Phys, C7 2791 (1974)
M. I. Klinger, J., Phys. C8 2343 (1975)
F. Garéia-Moliner, Theory of Condensed Matter, Trieste Lectures,
Trieste 1967, p. 229, IAEA (1968) Vienna
D, Shaw, Atomic Diffusion in Semiconductors, p. 32,38, Editor

D. Shaw, Plenum Press (1973)

69



2]

23]
[24]
[25]

[2¢)

27]
pe)
29)

B
B1]

(2]
33
(34

(23]
€]
37
[>8]
(34]
[:9)

70

W. Jones, N, March, Theoretical Solid State Physics, vol. 1
chapters 1.9 and 1.11.4, Wiley (1973)

Me I. Klinger, Sov. Phys, Dokl. 21 509 (1976)

K. Weiser, Phys. Rev. 126 1427 (1962)

J« Callaway, Energy Band Theory, chapter 1, Academic Press
(1964)

S, M. Hu, Atomic Diffusion in Semiconductors, p. 217, Editor

D. Shaw Wiley (1973)

R. B. Dingle, Phil, Mag. 46 831-(1955)

Re A. Swalin, J. Phys. Chem. Solids 23 153 (1962)

L, Pauling, The Nature of the Chemical Bond, (2nd ed,) Cornell
Press, Ithaca, New York (1940)

D. P. Kennedy, Proc. IEEE (Ltrs) 57 1202 (1969)

N. We Ashcroft, N, D. Mermin, Solid state Physics, Holt, Rinehart
and Winston (1976)

B, Yavorsky, A. Detlaf, Handbook of Physics, ps 922, English
transl, Mir Publ, (1975)

R. A. Swalin, Atomic Diffusion in Semiconductors, p. 65, Editor
D. Shaw, Plenum Press (1973)

G. Kaye, Ts Laby, Tables of Physical and Chemical Constants,
Longman (1973)

E. Gorham-Bergeron, Phys. Reve Lott, 37 146 (1976)

Ce. Fuller, J. Ditzenberger, Phys. Rev. 91 193 (1953)

C. Fuller, J, Severiens, Phys. Dev, 96 21 (1954)

B, Pratt, F. Friedman, J. Appl. Phys. 37 1893 (1966)

Yu. Shaskov, I. Akimchenko, Dokl, Akad. Nauk. SSSR 128 937 (1959)

E. M, Pell, Phys. Reve. 119 1014, 1222 (1960)



(41)
2]
&3
4]

M.

D.

K.

Pell, J. Phys. Chem. Solids 3 77 (1957)
Weiner, Phys. Rev. Bl4 4741 (1976)
LeClaire, Phil. Mag. 14 1271 (1966)

Mundy, L. W, Barr and F, A. Smith, Phil, Mag. 14 785 (1966)

71



